Malone, C.F., et al. mTOR and HDAC Inhibitors Converge on the TXNIP/Thioredoxin Pathway to Cause Catastrophic Oxidative Stress and Regression of RAS-Driven Tumors. Cancer Discov 7, 12, 1450-1463 (2017).Abstract
Although agents that inhibit specific oncogenic kinases have been successful in a subset of cancers, there are currently few treatment options for malignancies that lack a targetable oncogenic driver. Nevertheless, during tumor evolution cancers engage a variety of protective pathways, which may provide alternative actionable dependencies. Here, we identify a promising combination therapy that kills NF1-mutant tumors by triggering catastrophic oxidative stress. Specifically, we show that mTOR and HDAC inhibitors kill aggressive nervous system malignancies and shrink tumors in vivo by converging on the TXNIP/thioredoxin antioxidant pathway, through cooperative effects on chromatin and transcription. Accordingly, TXNIP triggers cell death by inhibiting thioredoxin and activating apoptosis signal-regulating kinase 1 (ASK1). Moreover, this drug combination also kills NF1-mutant and KRAS-mutant non-small cell lung cancers. Together, these studies identify a promising therapeutic combination for several currently untreatable malignancies and reveal a protective nodal point of convergence between these important epigenetic and oncogenic enzymes.Significance: There are no effective therapies for NF1- or RAS-mutant cancers. We show that combined mTOR/HDAC inhibitors kill these RAS-driven tumors by causing catastrophic oxidative stress. This study identifies a promising therapeutic combination and demonstrates that selective enhancement of oxidative stress may be more broadly exploited for developing cancer therapies. Cancer Discov; 7(12); 1450-63. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1355.
Osseiran, S., et al. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy. J Biomed Opt 22, 12, 1-10 (2017).Abstract
Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.
Najm, F.J., et al. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol (2017).Abstract
Combinatorial genetic screening using CRISPR-Cas9 is a useful approach to uncover redundant genes and to explore complex gene networks. However, current methods suffer from interference between the single-guide RNAs (sgRNAs) and from limited gene targeting activity. To increase the efficiency of combinatorial screening, we employ orthogonal Cas9 enzymes from Staphylococcus aureus and Streptococcus pyogenes. We used machine learning to establish S. aureus Cas9 sgRNA design rules and paired S. aureus Cas9 with S. pyogenes Cas9 to achieve dual targeting in a high fraction of cells. We also developed a lentiviral vector and cloning strategy to generate high-complexity pooled dual-knockout libraries to identify synthetic lethal and buffering gene pairs across multiple cell types, including MAPK pathway genes and apoptotic genes. Our orthologous approach also enabled a screen combining gene knockouts with transcriptional activation, which revealed genetic interactions with TP53. The "Big Papi" (paired aureus and pyogenes for interactions) approach described here will be widely applicable for the study of combinatorial phenotypes.
Manguso, R.T., et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 7664, 413-418 (2017).Abstract
Immunotherapy with PD-1 checkpoint blockade is effective in only a minority of patients with cancer, suggesting that additional treatment strategies are needed. Here we use a pooled in vivo genetic screening approach using CRISPR-Cas9 genome editing in transplantable tumours in mice treated with immunotherapy to discover previously undescribed immunotherapy targets. We tested 2,368 genes expressed by melanoma cells to identify those that synergize with or cause resistance to checkpoint blockade. We recovered the known immune evasion molecules PD-L1 and CD47, and confirmed that defects in interferon-γ signalling caused resistance to immunotherapy. Tumours were sensitized to immunotherapy by deletion of genes involved in several diverse pathways, including NF-κB signalling, antigen presentation and the unfolded protein response. In addition, deletion of the protein tyrosine phosphatase PTPN2 in tumour cells increased the efficacy of immunotherapy by enhancing interferon-γ-mediated effects on antigen presentation and growth suppression. In vivo genetic screens in tumour models can identify new immunotherapy targets in unanticipated pathways.
Rondinelli, B., et al. EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat Cell Biol (2017).Abstract
The emergence of resistance to poly-ADP-ribose polymerase inhibitors (PARPi) poses a threat to the treatment of BRCA1 and BRCA2 (BRCA1/2)-deficient tumours. Stabilization of stalled DNA replication forks is a recently identified PARPi-resistance mechanism that promotes genomic stability in BRCA1/2-deficient cancers. Dissecting the molecular pathways controlling genomic stability at stalled forks is critical. Here we show that EZH2 localizes at stalled forks where it methylates Lys27 on histone 3 (H3K27me3), mediating recruitment of the MUS81 nuclease. Low EZH2 levels reduce H3K27 methylation, prevent MUS81 recruitment at stalled forks and cause fork stabilization. As a consequence, loss of function of the EZH2/MUS81 axis promotes PARPi resistance in BRCA2-deficient cells. Accordingly, low EZH2 or MUS81 expression levels predict chemoresistance and poor outcome in patients with BRCA2-mutated tumours. Moreover, inhibition of Ezh2 in a murine Brca2(-/-) breast tumour model is associated with acquired PARPi resistance. Our findings identify EZH2 as a critical regulator of genomic stability at stalled forks that couples histone modifications to nuclease recruitment. Our data identify EZH2 expression as a biomarker of BRCA2-deficient tumour response to chemotherapy.
Spinelli, J.B., et al. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science (2017).Abstract
Ammonia is a ubiquitous by-product of cellular metabolism, however the biological consequences of ammonia production are not fully understood, especially in cancer. We find that ammonia is not merely a toxic waste product, but is recycled into central amino acid metabolism to maximize nitrogen utilization. Cancer cells primarily assimilated ammonia through reductive amination catalyzed by glutamate dehydrogenase (GDH), and secondary reactions enabled other amino acids, such as proline and aspartate, to directly acquire this nitrogen. Metabolic recycling of ammonia accelerated proliferation of breast cancer. In mice, ammonia accumulated in the tumor microenvironment, and was used directly to generate amino acids through GDH activity. These data show that ammonia not only is a secreted waste product, but a fundamental nitrogen source that can support tumor biomass.
Kabraji, S., et al. AKT1(low) quiescent cancer cells persist after neoadjuvant chemotherapy in triple negative breast cancer. Breast Cancer Res 19, 1, 88 (2017). Publisher's VersionAbstract
BACKGROUND: Absence of pathologic complete response (pCR) to neoadjuvant chemotherapy (NACT) correlates with poor long-term survival in patients with triple negative breast cancer (TNBC). These incomplete treatment responses are likely determined by mechanisms that enable cancer cells to resist being killed. However, the detailed characterization of a drug-resistant cancer cell state in residual TNBC tissue after NACT has remained elusive. AKT1(low) quiescent cancer cells (QCCs) are a quiescent, epigenetically plastic, and chemotherapy-resistant subpopulation initially identified in experimental cancer models. Here, we asked whether QCCs exist in primary tumors from patients with TNBC and persist after treatment with NACT. METHODS: We obtained pre-treatment biopsy, post-treatment mastectomy, and metastatic specimens from a retrospective cohort of TNBC patients treated with NACT at Massachusetts General Hospital (n = 25). Using quantitative automated immunofluorescence microscopy, QCCs were identified as AKT(low)/H3K9me2(low)/HES1(high) cancer cells using prespecified immunofluorescence intensity thresholds. QCCs were represented in 2D and 3D digital tumor maps and QCC percentage (QCC-P) and QCC cluster index (QCC-CI) were determined for each sample. RESULTS: We showed that QCCs exist as non-random and heterogeneously distributed clusters within primary breast tumors. In addition, these QCC clusters persist after treatment with multi-agent, multi-cycle, neoadjuvant chemotherapy in both residual primary tumors and nodal and distant metastases in patients with triple negative breast cancer. CONCLUSIONS: These first-in-human data potentially qualify AKT1(low) quiescent cancer cells as a non-genetic cell state that persists after neoadjuvant chemotherapy in triple negative breast cancer patients and warrants further study.
Mouw, K.W., Goldberg, M.S., Konstantinopoulos, P.A. & D'Andrea, A.D. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov 7, 7, 675-693 (2017). Publisher's VersionAbstract
DNA-damaging agents are widely used in clinical oncology and exploit deficiencies in tumor DNA repair. Given the expanding role of immune checkpoint blockade as a therapeutic strategy, the interaction of tumor DNA damage with the immune system has recently come into focus, and it is now clear that the tumor DNA repair landscape has an important role in driving response to immune checkpoint blockade. Here, we summarize the mechanisms by which DNA damage and genomic instability have been found to shape the antitumor immune response and describe clinical efforts to use DNA repair biomarkers to guide use of immune-directed therapies.Significance: Only a subset of patients respond to immune checkpoint blockade, and reliable predictive biomarkers of response are needed to guide therapy decisions. DNA repair deficiency is common among tumors, and emerging experimental and clinical evidence suggests that features of genomic instability are associated with response to immune-directed therapies. Cancer Discov; 7(7); 675-93. ©2017 AACR.
Li, H., et al. The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. Blood 129, 4, 497-508 (2017). Publisher's VersionAbstract
Acute myeloid leukemia (AML) is a heterogeneous disease with complex molecular pathophysiology. To systematically characterize AML's genetic dependencies, we conducted genome-scale short hairpin RNA screens in 17 AML cell lines and analyzed dependencies relative to parallel screens in 199 cell lines of other cancer types. We identified 353 genes specifically required for AML cell proliferation. To validate the in vivo relevance of genetic dependencies observed in human cell lines, we performed a secondary screen in a syngeneic murine AML model driven by the MLL-AF9 oncogenic fusion protein. Integrating the results of these interference RNA screens and additional gene expression data, we identified the transcription factor ZEB2 as a novel AML dependency. ZEB2 depletion impaired the proliferation of both human and mouse AML cells and resulted in aberrant differentiation of human AML cells. Mechanistically, we showed that ZEB2 transcriptionally represses genes that regulate myeloid differentiation, including genes involved in cell adhesion and migration. In addition, we found that epigenetic silencing of the miR-200 family microRNAs affects ZEB2 expression. Our results extend the role of ZEB2 beyond regulating epithelial-mesenchymal transition (EMT) and establish ZEB2 as a novel regulator of AML proliferation and differentiation.
Letai, A. Functional precision cancer medicine-moving beyond pure genomics. Nat Med 23, 9, 1028-1035 (2017). Publisher's VersionAbstract
The essential job of precision medicine is to match the right drugs to the right patients. In cancer, precision medicine has been nearly synonymous with genomics. However, sobering recent studies have generally shown that most patients with cancer who receive genomic testing do not benefit from a genomic precision medicine strategy. Although some call the entire project of precision cancer medicine into question, I suggest instead that the tools employed must be broadened. Instead of relying exclusively on big data measurements of initial conditions, we should also acquire highly actionable functional information by perturbing-for example, with cancer therapies-viable primary tumor cells from patients with cancer.
Severson, E., et al. Genome-wide identification and characterization of Notch transcription complex-binding sequence-paired sites in leukemia cells. Sci Signal 10, 477, (2017). Publisher's VersionAbstract
Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and have been linked to the Notch responsiveness of a few genes. To assess the overall contribution of SPSs to Notch-dependent gene regulation, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay and applied insights from these in vitro studies to Notch-"addicted" T cell acute lymphoblastic leukemia (T-ALL) cells. We found that SPSs contributed to the regulation of about a third of direct Notch target genes. Although originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5 expression. Our work provides a general method for identifying SPSs in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells.
Gil Del Alcazar, C.R., et al. Immune Escape in Breast Cancer During In Situ to Invasive Carcinoma Transition. Cancer Discov 7, 10, 1098-1115 (2017). Publisher's VersionAbstract
To investigate immune escape during breast tumor progression, we analyzed the composition of leukocytes in normal breast tissues, ductal carcinoma in situ (DCIS), and invasive ductal carcinomas (IDC). We found significant tissue and tumor subtype-specific differences in multiple cell types including T cells and neutrophils. Gene expression profiling of CD45(+)CD3(+) T cells demonstrated a decrease in CD8(+) signatures in IDCs. Immunofluorescence analysis showed fewer activated GZMB(+)CD8(+) T cells in IDC than in DCIS, including in matched DCIS and recurrent IDC. T-cell receptor clonotype diversity was significantly higher in DCIS than in IDCs. Immune checkpoint protein TIGIT-expressing T cells were more frequent in DCIS, whereas high PD-L1 expression and amplification of CD274 (encoding PD-L1) was only detected in triple-negative IDCs. Coamplification of a 17q12 chemokine cluster with ERBB2 subdivided HER2(+) breast tumors into immunologically and clinically distinct subtypes. Our results show coevolution of cancer cells and the immune microenvironment during tumor progression.Significance: The design of effective cancer immunotherapies requires the understanding of mechanisms underlying immune escape during tumor progression. Here we demonstrate a switch to a less active tumor immune environment during the in situ to invasive breast carcinoma transition, and identify immune regulators and genomic alterations that shape tumor evolution. Cancer Discov; 7(10); 1098-115. ©2017 AACR.See related commentary by Speiser and Verdeil, p. 1062This article is highlighted in the In This Issue feature, p. 1047.
Rupaimoole, R. & Slack, F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16, 3, 203-222 (2017).Abstract
In just over two decades since the discovery of the first microRNA (miRNA), the field of miRNA biology has expanded considerably. Insights into the roles of miRNAs in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that miRNA dysregulation is causal in many cases of cancer, with miRNAs acting as tumour suppressors or oncogenes (oncomiRs), and miRNA mimics and molecules targeted at miRNAs (antimiRs) have shown promise in preclinical development. Several miRNA-targeted therapeutics have reached clinical development, including a mimic of the tumour suppressor miRNA miR-34, which reached phase I clinical trials for treating cancer, and antimiRs targeted at miR-122, which reached phase II trials for treating hepatitis. In this article, we describe recent advances in our understanding of miRNAs in cancer and in other diseases and provide an overview of current miRNA therapeutics in the clinic. We also discuss the challenge of identifying the most efficacious therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics.
Cortes-Ciriano, I., Lee, S., Park, W.-Y., Kim, T.-M. & Park, P.J. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun 8, 15180 (2017). Publisher's VersionAbstract
Microsatellite instability (MSI) refers to the hypermutability of short repetitive sequences in the genome caused by impaired DNA mismatch repair. Although MSI has been studied for decades, large amounts of sequencing data now available allows us to examine the molecular fingerprints of MSI in greater detail. Here, we analyse ∼8,000 exomes and ∼1,000 whole genomes of cancer patients across 23 cancer types. Our analysis reveals that the frequency of MSI events is highly variable within and across tumour types. We also identify genes in DNA repair and oncogenic pathways recurrently subject to MSI and uncover non-coding loci that frequently display MSI. Finally, we propose a highly accurate exome-based predictive model for the MSI phenotype. These results advance our understanding of the genomic drivers and consequences of MSI, and our comprehensive catalogue of tumour-type-specific MSI loci will enable panel-based MSI testing to identify patients who are likely to benefit from immunotherapy.
Najafov, A., Chen, H. & Yuan, J. Necroptosis and Cancer. Trends Cancer 3, 4, 294-301 (2017).Abstract
Necroptosis is a programmed lytic cell death pathway, deregulation of which is linked to various inflammatory disorders. Escape from programmed cell death and inflammation play a significant role in cancer, and therefore, investigating the role of necroptosis in cancer has been of high interest. Necroptosis has been shown to promote cancer metastasis and T cells death. Escape from necroptosis via loss of RIPK3 expression is a feature of some cancers. While necroptosis is a promising novel target for cancer therapies, further investigation into its biological role in carcinogenesis is warranted. In this article, we review the recently-identified interplay points between necroptosis and cancer, and outline major biological questions that require further inquiry on the road to targeting this pathway in cancer.
Stewart-Ornstein, J. & Lahav, G. p53 dynamics in response to DNA damage vary across cell lines and are shaped by efficiency of DNA repair and activity of the kinase ATM. Sci Signal 10, 476, (2017).Abstract
Cellular systems show a wide range of signaling dynamics. Many of these dynamics are highly stereotyped, such as oscillations at a fixed frequency. However, most studies looking at the role of signaling dynamics focus on one or a few cell lines, leaving the diversity of dynamics across tissues or cell lines a largely unexplored question. We focused on the dynamics of the tumor suppressor protein p53, which regulates cell cycle arrest and apoptosis in response to DNA damage. We established live-cell reporters for 12 cancer cell lines expressing wild-type p53 and quantified p53 dynamics in response to double-strand break-inducing DNA damage. In many of the tested cell lines, we found that p53 abundance oscillated in response to ionizing radiation or the DNA-damaging chemotherapeutic neocarzinostatin and that the periodicity of the oscillations was fixed. In other cell lines, p53 abundance dynamically changed in different ways, such as a single broad pulse or a continuous induction. By combining single-cell assays of p53 signaling dynamics, small-molecule screening in live cells, and mathematical modeling, we identified molecules that perturbed p53 dynamics and determined that cell-specific variation in the efficiency of DNA repair and the activity of the kinase ATM (ataxia-telangiectasia mutated) controlled the signaling landscape of p53 dynamics. Because the dynamics of wild-type p53 varied substantially between cell lines, our study highlights the limitation of using one line as a model system and emphasizes the importance of studying the dynamics of other signaling pathways across different cell lines and genetic backgrounds.
Hafner, A., et al. p53 pulses lead to distinct patterns of gene expression albeit similar DNA-binding dynamics. Nat Struct Mol Biol (2017). Publisher's VersionAbstract
The dynamics of transcription factors play important roles in a variety of biological systems. However, the mechanisms by which these dynamics are decoded into different transcriptional responses are not well understood. Here we focus on the dynamics of the tumor-suppressor protein p53, which exhibits a series of pulses in response to DNA damage. We performed time course RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) measurements to determine how p53 oscillations are linked with gene expression genome wide. We discovered multiple distinct patterns of gene expression in response to p53 pulses. Surprisingly, p53-binding dynamics were uniform across all genomic loci, even for genes that exhibited distinct mRNA dynamics. Using a mathematical model, supported by additional experimental measurements in response to sustained p53 input, we determined that p53 binds to and activates transcription of its target genes uniformly, whereas post-transcriptional mechanisms are responsible for the differences in gene expression dynamics.
Chakrabarti, S. & Michor, F. Pharmacokinetics and Drug Interactions Determine Optimum Combination Strategies in Computational Models of Cancer Evolution. Cancer Res 77, 14, 3908-3921 (2017).Abstract
The identification of optimal drug administration schedules to battle the emergence of resistance is a major challenge in cancer research. The existence of a multitude of resistance mechanisms necessitates administering drugs in combination, significantly complicating the endeavor of predicting the evolutionary dynamics of cancers and optimal intervention strategies. A thorough understanding of the important determinants of cancer evolution under combination therapies is therefore crucial for correctly predicting treatment outcomes. Here we developed the first computational strategy to explore pharmacokinetic and drug interaction effects in evolutionary models of cancer progression, a crucial step towards making clinically relevant predictions. We found that incorporating these phenomena into our multiscale stochastic modeling framework significantly changes the optimum drug administration schedules identified, often predicting nonintuitive strategies for combination therapies. We applied our approach to an ongoing phase Ib clinical trial (TATTON) administering AZD9291 and selumetinib to EGFR-mutant lung cancer patients. Our results suggest that the schedules used in the three trial arms have almost identical efficacies, but slight modifications in the dosing frequencies of the two drugs can significantly increase tumor cell eradication. Interestingly, we also predict that drug concentrations lower than the MTD are as efficacious, suggesting that lowering the total amount of drug administered could lower toxicities while not compromising on the effectiveness of the drugs. Our approach highlights the fact that quantitative knowledge of pharmacokinetic, drug interaction, and evolutionary processes is essential for identifying best intervention strategies. Our method is applicable to diverse cancer and treatment types and allows for a rational design of clinical trials. Cancer Res; 77(14); 3908-21. ©2017 AACR.
Hata, A.N., et al. Synergistic activity and heterogeneous acquired resistance of combined MDM2 and MEK inhibition in KRAS mutant cancers. Oncogene (2017).Abstract
There are currently no effective targeted therapies for KRAS mutant cancers. Therapeutic strategies that combine MEK inhibitors with agents that target apoptotic pathways may be a promising therapeutic approach. We investigated combining MEK and MDM2 inhibitors as a potential treatment strategy for KRAS mutant non-small cell lung cancers (NSCLC) and colorectal carcinomas that harbor wild-type TP53. The combination of pimasertib (MEK inhibitor) and SAR405838 (MDM2 inhibitor) was synergistic and induced the expression of PUMA and BIM, led to apoptosis and growth inhibition in vitro, and tumor regression in vivo. Acquired resistance to the combination commonly resulted from the acquisition of TP53 mutations, conferring complete resistance to MDM2 inhibition. In contrast, resistant clones exhibited marked variability in sensitivity to MEK inhibition, which significantly impacted sensitivity to subsequent treatment with alternative MEK inhibitor-based combination therapies. These results highlight both the potential promise and limitations of combining MEK and MDM2 inhibitors for treatment of KRAS mutant NSCLC and colorectal cancers.Oncogene advance online publication, 7 August 2017; doi:10.1038/onc.2017.258.
Flavahan, W.A., Gaskell, E. & Bernstein, B.E. Epigenetic plasticity and the hallmarks of cancer. Science 357, 6348, eaal2380 (2017). Publisher's VersionAbstract
Chromatin and associated epigenetic mechanisms stabilize gene expression and cellular states while also facilitating appropriate responses to developmental or environmental cues. Genetic, environmental, or metabolic insults can induce overly restrictive or overly permissive epigenetic landscapes that contribute to pathogenesis of cancer and other diseases. Restrictive chromatin states may prevent appropriate induction of tumor suppressor programs or block differentiation. By contrast, permissive or "plastic" states may allow stochastic oncogene activation or nonphysiologic cell fate transitions. Whereas many stochastic events will be inconsequential "passengers," some will confer a fitness advantage to a cell and be selected as "drivers." We review the broad roles played by epigenetic aberrations in tumor initiation and evolution and their potential to give rise to all classic hallmarks of cancer.